Studies on the High-pressure Reaction of Rare-earth Sesquioxides with Vanadium Dioxide

Tsutomu Shin-ike,* Gin-ya Adachi,† Jiro Shiokawa,† Masahiko Shimada,†† and Mitsue Koizumi††

Department of Chemistry, Osaka Dental University, Makino-honmachi, Hirakata, Osaka 573

† Department of Applied Chemistry, Faculty of Engineering, Osaka University,

Yamadaoka, Suita, Osaka 565

†† The Institute of Scientific and Industrial Research, Osaka University, Yamadaoka, Suita, Osaka 565 (Received November 11, 1981)

The reaction of rare-earth sesquioxides (Ln₂O₃) with vanadium dioxide (VO₂) at 1400 °C and 50 kbar** and 30 kbar was studied. Quadrivalent vanadium ions were reduced to the trivalent state, rare-earth vanadates (III) (LnVO₃) being obtained. For LnVO₃ a typical transformation of the ABO₃-type compounds, one from the aragonite-type to the perovskite-type via the vaterite- or calcite-type structure was observed with a decrease in the ionic radius of the rare-earth ions. The magnetic properties of the vaterite-type LnVO₃ were studied.

We have previously studied the reaction of erbium sesquioxide ($\rm Er_2O_3$) with vanadium dioxide ($\rm VO_2$) at 1400 °C and 50 kbar and 30 kbar, and succeeded to obtain vaterite- and calcite-type $\rm ErVO_3$. Under these conditions quadrivalent vanadium ions are unstable and reduced to the trivalent state. $\rm ErVO_3$ with the crystal structure other than the perovskite-type has been first obtained. In this paper, we report on the high-pressure reaction of the rare-earth sesquioxides ($\rm Ln_2O_3$) with $\rm VO_2$.

Experimental

The preparative and analytical methods were similar to those described previously.¹⁾

Results and Discussion

The Reaction Products of Ln_2O_3 with VO_2 at High Pressures. The Ln_2O_3 -VO₂ mixtures in 1:2 were heated at 1400 °C and 50 kbar or 30 kbar. The atomic ratio of the rare-earth element to vanadium in the products was determined to be 1.0 by the fluorescent X-ray analysis. The valence states of vanadium in the products were estimated from the result of the oxygen analysis, which revealed that the quadrivalent vanadium ions in the products were reduced to the trivalent state and the formulae of the products were $LnVO_3$ in every case.

Crystal Structures of the Products. X-Ray diffraction data for aragonite-type $LaBO_3^{(2)}$ and the reaction product of the 1:2 mixture of La_2O_3 and VO_2 heated at 50 kbar for 30 min are given in Table 1. Similarity of the X-ray diffraction pattern of $LaVO_3$ to that of the aragonite-type compound suggests that the compound crystallizes in the orthorhombic system, a=5.869 Å, b=8.261 Å, and c=5.103 Å. The structural feature of $LaVO_3$ obtained at 30 kbar was equal to that of the product obtained at 50 kbar.

The crystal structures of NdVO₃ and SmVO₃ obtained by heating at 50 kbar and 30 kbar for 30 min belonged to the aragonite-type, same as that of LaVO₃. The cell parameters were a=5.703 Å, b=8.032 Å, and c=5.011 Å for the neodymium compound, and a=

** 1 bar=10⁵ Pa.

Table 1. X-Ray diffraction results for aragonite-type $LaBO_3$ and $LaVO_3$

${\rm LaBO_3^{2)}}$	$LaVO_3$
Orthorhombic	
a = 5.872 Å	a = 5.869 Å
b = 8.257 Å	b = 8.261 Å
c = 5.107 Å	c = 5.103 Å

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v=3.10711			0-0.10011		
020 4.13 10 4.14 4.13 5 111 3.49 100 3.49 3.49 100 120 3.38 55 3.38 3.38 60 200 2.936 20 2.936 2.935 40 210 2.767 8 2.767 2.765 8 002 2.553 20 2.554 2.552 15 201 2.547 12 2.547 2.544 7 211 2.433 40 2.432 2.431 35 031 2.424 25 2.426 2.423 31 220 2.394 14 2.388 2.392 40 112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036	hkl	d/Å	I	$d_{ m obsd}/{ m \AA}$	$d_{ m calcd}/{ m \AA}$	I
111 3.49 100 3.49 3.49 100 120 3.38 55 3.38 3.38 60 200 2.936 20 2.936 2.935 40 210 2.767 8 2.767 2.765 8 002 2.553 20 2.554 2.552 15 201 2.547 12 2.547 2.544 7 211 2.433 40 2.432 2.431 35 031 2.424 25 2.426 2.423 31 220 2.394 14 2.388 2.392 40 112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 <td>011</td> <td>4.34</td> <td>20</td> <td>4.35</td> <td>4.34</td> <td>25</td>	011	4.34	20	4.35	4.34	25
120 3.38 55 3.38 3.38 60 200 2.936 20 2.936 2.935 40 210 2.767 8 2.767 2.765 8 002 2.553 20 2.554 2.552 15 201 2.547 12 2.547 2.544 7 211 2.433 40 2.432 2.431 35 031 2.424 25 2.426 2.423 31 220 2.394 14 2.388 2.392 40 112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.869 30 311 1.785 20 1.785 1.784 20 <td>020</td> <td>4.13</td> <td>10</td> <td>4.14</td> <td>4.13</td> <td>5</td>	020	4.13	10	4.14	4.13	5
200 2.936 20 2.936 2.935 40 210 2.767 8 2.767 2.765 8 002 2.553 20 2.554 2.552 15 201 2.547 12 2.547 2.544 7 211 2.433 40 2.432 2.431 35 031 2.424 25 2.426 2.423 31 220 2.394 14 2.388 2.392 40 112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.8 231 1.869 35 1.869 1.869 30	111	3.49	100	3.49	3.49	100
210 2.767 8 2.767 2.765 8 002 2.553 20 2.554 2.552 15 201 2.547 12 2.547 2.544 7 211 2.433 40 2.432 2.431 35 031 2.424 25 2.426 2.423 31 220 2.394 14 2.388 2.392 40 112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.745 1.	120	3.38	55	3.38	3.38	60
002 2.553 20 2.554 2.552 15 201 2.547 12 2.547 2.544 7 211 2.433 40 2.432 2.431 35 031 2.424 25 2.426 2.423 31 220 2.394 14 2.388 2.392 40 112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.	200	2.936	20	2.936	2.935	40
201 2.547 12 2.547 2.544 7 211 2.433 40 2.432 2.431 35 031 2.424 25 2.426 2.423 31 220 2.394 14 2.388 2.392 40 112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.745 1.745 5 240 1.690 6 1.68	210	2.767	8	2.767	2.765	8
211 2.433 40 2.432 2.431 35 031 2.424 25 2.426 2.423 31 220 2.394 14 2.388 2.392 40 112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548	002	2.553	20	2.554	2.552	15
031 2.424 25 2.426 2.423 31 220 2.394 14 2.388 2.392 40 112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.	201	2.547	12	2.547	2.544	7
220 2.394 14 2.388 2.392 40 112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.745 15 222 1.746 8 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.5	211	2.433	40	2.432	2.431	35
112 2.252 10 2.252 2.251 5 022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.	031	2.424	25	2.426	2.423	31
022 2.173 12 2.170 2.170 10 040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.745 1.745 5 222 1.746 8 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.4	220	2.394	14	2.388	2.392	40
040 2.066 8 2.068 2.065 20 122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.745 15 222 1.746 8 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 </td <td>112</td> <td>2.252</td> <td>10</td> <td>2.252</td> <td>2.251</td> <td>5</td>	112	2.252	10	2.252	2.251	5
122 2.037 45 2.036 2.036 45 140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.768 15 222 1.746 8 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11	022	2.173	12	2.170	2.170	10
140 1.947 20 1.947 1.948 18 202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.768 15 222 1.746 8 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 <	040	2.066	8	2.068	2.065	20
202 1.927 20 1.926 1.926 18 231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.768 15 222 1.746 8 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8 <td>122</td> <td>2.037</td> <td>45</td> <td>2.036</td> <td>2.036</td> <td>45</td>	122	2.037	45	2.036	2.036	45
231 1.869 35 1.869 1.869 30 311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.768 15 222 1.746 8 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8 <td>140</td> <td>1.947</td> <td>20</td> <td>1.947</td> <td>1.948</td> <td>18</td>	140	1.947	20	1.947	1.948	18
311 1.785 20 1.785 1.784 20 320 1.768 14 1.768 1.768 15 222 1.746 8 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	202	1.927	20	1.926	1.926	18
320 1.768 14 1.768 1.768 15 222 1.746 8 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	231	1.869	35	1.869	1.869	30
222 1.746 8 1.745 1.745 5 240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	311	1.785	20	1.785	1.784	20
240 1.690 6 1.689 1.689 5 113 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	320	1.768	14	1.768	1.768	15
113 241 1.6039 14 1.603 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	222	1.746	8	1.745	1.745	5
241 1.6039 14 1.603 12 142 1.5482 12 1.548 1.548 8 151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	240	1.690	6	1.689	1.689	5
151 1.5176 10 1.519 1.518 7 213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8		1.6039	14	1.603		12
213 1.4497 12 1.447 1.449 8 411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	142	1.5482	12	1.548	1.548	8
411 1.3906 8 1.389 1.390 6 233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	151	1.5176	10	1.519	1.518	7
233 1.2985 10 1.298 1.298 11 431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	213	1.4497	12	1.447	1.449	8
431 1.256 1.255 7 252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	411	1.3906	8	1.389	1.390	6
252 1.252 1.254 6 104 1.247 1.247 5 342 1.241 1.241 8	233	1.2985	10	1.298	1.298	11
104 1.247 1.247 5 342 1.241 1.241 8	431			1.256	1.255	7
342 1.241 1.241 8	252			1.252	1.254	6
	104			1.247	1.247	5
351 1.225 1.225 8	342			1.241	1.241	8
	351			1.225	1.225	8

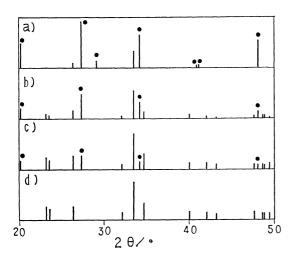


Fig. 1. X-Ray diffraction patterns for Y₂O₃-VO₂ 1:2 mixtures at 1400 °C and 50 kbar. Reaction period; a) 60 min, b) 30 min, c) 10 min, and d) perovskite-type YVO₃.

5.661 Å, b=7.992 Å, and c=5.028 Å for the samarium compound.

The crystal structure of HoVO₃ obtained by the reaction of the 1:2 mixture of Ho₂O₃ and VO₂ at 50 kbar for 30 min was isostructural with HoBO₃,²⁾ vaterite-type and belonged to the hexagonal system, while one obtained at 30 kbar was the calcite-type belonging to the rhombohedral (pseudo-hexagonal) system. These results are similar to those of the reaction of Er₂O₃ with VO₂.¹⁾

The X-ray diffraction patterns of the products obtained by the reaction of Y_2O_3 – VO_2 (1:2 mixture) along with that of the perovskite type YVO_3 are shown in Fig. 1. The peaks marked by a dot can be assigned to the vaterite-type crystal. When the reaction was carried out at $1400\,^{\circ}\text{C}$ and $50\,\text{kbar}$ for 10 min or 30 min, a mixture of perovskite- and vaterite-type YVO_3 was obtained. A prolonged reaction time (60 min) resulted in a decrease in the perovskite-type and an increase in the vaterite-type compounds.

The reaction product of $\mathrm{Dy_2O_3}\text{-VO_2}$ (1:2 mixture) at 50 kbar for 30 min was the perovskite-type crystal including a trace amount of the vaterite-type compound, and those of $\mathrm{Y_2O_3}\text{-VO_2}$ and $\mathrm{Dy_2O_3}\text{-VO_2}$ (1:2 mixtures) at 30 kbar for 30 min were perovskite-type crystals along with a trace amount of the calcite-type compound. If the reaction time is longer for the $\mathrm{Y_2O_3}\text{-VO_2}$ and $\mathrm{Dy_2O_3}\text{-VO_2}$ systems, vaterite- or calcite-type crystals will be obtained.

For the reaction products of Eu₂O₃ or Gd₂O₃ with VO₂ their poor crystallinity prevented the determination of their crystal structures.

The reactions between Yb₂O₃, Tm₂O₃, and Lu₂O₃ with VO₂ at high pressures gave perovskite-type oxides.

The crystal structures of the high-pressure products as well as those of the rare-earth borates are summarized in Fig. 2. As is well known aragonite, vaterite and calcite are modifications of calcium carbonate (Fig. 3). The rare-earth borate transforms from the aragonite-type to the calcite-type structure via the vaterite-type structure with a decrease in ionic radius

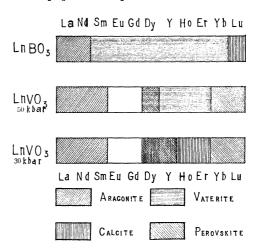


Fig. 2. Crystal structures for LnVO₃ and LnBO₃.2)

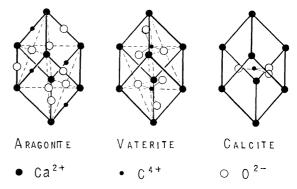


Fig. 3. Comparison of the idealized three structure types of calcium carbonate.

Table 2. Lattice constants and the specific gravity of ${\rm LnVO_3}$

Aragonite Perovskite	5.869 5.548	8.261	5.103	6.41
			7.846	6.57
Aragonite Perovskite	5.703 5.466	8.032 5.569	5.011 7.735	7.07 6.89
Aragonite Perovskite	5.661 5.400	7.992 5.591	5.028 7.680	7.31 7.17
Vaterite Perovskite	3.779 5.274	5.590	8.809 7.579	5.75 5.61
Vaterite Calcite	3.783 4.93	5 501	8.792 16.47	8.09 7.61 7.86
Vaterite Calcite	3.762 4.929		8.790 16.429	7.30 8.24 7.70 7.99
	Aragonite Perovskite Vaterite Perovskite Vaterite Calcite Perovskite	Aragonite 5.661 Perovskite 5.400 Vaterite 3.779 Perovskite 5.274 Vaterite 3.783 Calcite 4.93 Perovskite 5.281 Vaterite 3.762 Calcite 4.929	Aragonite 5.661 7.992 Perovskite 5.400 5.591 Vaterite 3.779 Perovskite 5.274 5.590 Vaterite 3.783 Calcite 4.93 Perovskite 5.281 5.591 Vaterite 3.762 Calcite 4.929	Aragonite 5.661 7.992 5.028 Perovskite 5.400 5.591 7.680 Vaterite 3.779 8.809 Perovskite 5.274 5.590 7.579 Vaterite 3.783 8.792 Calcite 4.93 16.47 Perovskite 5.281 5.591 7.582 Vaterite 3.762 8.790 Calcite 4.929 16.429

of the rare-earth ions. For the rare-earth vanadates-(III) a typical transformation observed for the ABO₃-type compounds,³⁾ one from the aragonite-type to the perovskite-type via the vaterite- or calcite-type structure was observed with a decrease in ionic radius of the rare-earth ions. That the crystal structure of the rare-earth vanadates(III) depends on the reaction pressure will be due to the difference in the compres-

Table 3. Magnetic properties of the vaterite-type LnVO₃

${ m LnVO_3}$		Magnetic moment/ $\mu_{ m B}$			Transition temp	
	$T > T_{ m N}$	$T_{ m N} > T > T_{ m C}$	For Ln ³⁺	Per one vanadium ion at 4.5 K	$T_{ m N}/{ m K}$	$T_{ m C}/{ m K}^{ m a}$
YVO_3	1.9			1.2	30	16
$\mathrm{HoVO_3}$	9.8	10.5	10.5	1.7	35	13
$\mathrm{ErVO_3}$	8.8	9.3	9.4	1.6	65	12

a) $T_{\rm C}$ were determined from the plots of σ^3 vs. T.

sibilities of the vanadium and rare-earth ions, and at high pressure, the vanadium ions are more compressible than the rare-earth ions.

The cell parameters and the density calculated from X-ray diffraction data of the high-pressure synthesized crystals are summarized in Table 2 along with those of the perovskite-type vanadates(III).⁴⁾ In general, the increase in pressure tends to stabilize the denser phase, and the most dense ABO₃ phase is considered to have the cubic-perovskite structure.⁵⁾ LnVO₃ with the perovskite-type structure are orthorhombically distorted from the ideal cubic perovskite structure, and the distortion increases with decrease in the ionic radius of the rare-earth ions.⁴⁾ Since packing of the ions in the perovskite-type crystals is insufficient because of the distortion, aragonite- and vaterite-type LnVO₃ crystals except LaVO₃ have a larger density than that of perovskite-type LnVO₃.

Magnetic Properties of the Vaterite-type LnVO₃. The magnetic susceptibility measurements were performed in the temperature range 4.5—300 K. The magnetic properties of the vaterite-type YVO₃, HoVO₃, and ErVO₃ are summarized in Table 3. As the observed values of the magnetic moment for these crystals are close to those for Ln³⁺, V³⁺ ions order antiferromag-

netically in the temperature range from $T_{\rm N}$ to $T_{\rm C}$, and the observed transformations at high temperature are attributable to their antiferromagnetic ordering. All the compounds with the vaterite-type structure were paramagnetic, the magnetic susceptibility following the Curie-Weiss law above the Neel temperature, $T_{\rm N}$. Below the temperature, $T_{\rm C}$, they showed ferromagnetic behavior. The value of the magnetic moment at 4.5 K suggests that this transition is attributable to the rearrangement of the antiferromagnetically ordered V³+ ions to the ferromagnetic state.

References

- 1) T. Shin-ike, G. Adachi, J. Shiokawa, M. Shimada, and M. Koizumi, Bull. Chem. Soc. Jpn., 53, 3563 (1980).
- 2) E. M. Levin, R. S. Roth, and J. B. Martin, Am. Mineral., 46, 1030 (1960).
- 3) R. Kiriyama and H. Kiriyama, "Structural Inorganic Chemistry II," Kyoritsu, Tokyo (1970), p. 8.
- 4) T. Sakai, G. Adachi, J. Shiokawa, and T. Shin-ike, Mater. Res. Bull., 11, 1295 (1976).
- 5) J. B. Goodenough, J. A. Kafalas, and J. M. Longo, "High-Pressure Synthesis," Academic Press, Inc., New York (1972).